Annales Universitatis Paedagogicae Cracoviensis

Studia ad Didacticam Mathematicae Pertinentia V (2013)

Jan Górowski, Adam Łomnicki

Prime counting function π^{*}

Abstract

The aim of this paper is to derive new explicit formulas for the function π, where $\pi(x)$ denotes the number of primes not exceeding x. Some justifications and generalisations of the formulas obtained by Willans (1964), Minac (1991) and Kaddoura and Abdul-Nabi (2012) are also obtained.

The inspiration to this paper were known results by C. P. Willans, J. Kaddoura and S. Abdul-Nabi (see Willans, 1964; Kaddoura, Abdul-Nabi, 2012). In this paper we deal with the prime counting function, i.e., the function $\pi(x)$ giving the number of primes less than or equal to a given number x. We recall a few known formulas expressing the function π. We also give some new formulas for $\pi(x)$.

We start with recalling some basic facts and notations. Let \mathbb{P} denote the set of all prime numbers, $[x]$ stand for the integer part of $x \in \mathbb{R}$ and let

$$
\mathbb{N}_{k}:=\{k, k+1, k+2, \ldots\}
$$

where k is an arbitrary fixed positive integer.
In 1964 C. P. Willans gave the following two formulas

$$
\begin{gather*}
\pi(n)=\sum_{j=2}^{n}\left[\cos ^{2} \pi \frac{(j-1)!+1}{j}\right] \text { for } n \in \mathbb{N}_{2} \tag{1}\\
\pi(n)=\sum_{j=2}^{n} \frac{\sin ^{2} \pi \frac{((j-1)!)^{2}}{j}}{\sin ^{2} \frac{\pi}{j}} \text { for } n \in \mathbb{N}_{2} \quad \text { (Willans, 1964). } \tag{2}
\end{gather*}
$$

In (Ribenboim, 1991) one may find the following formula discovered by J. Mináč

$$
\begin{equation*}
\pi(n)=\sum_{j=2}^{n}\left[\frac{(j-1)!+1}{j}-\left[\frac{(j-1)!}{j}\right]\right] \quad \text { dla } \quad n \in \mathbb{N}_{2} . \tag{3}
\end{equation*}
$$

A similar formula was given also in (Kaddoura, Abdul-Nabi, 2012). Let us remark that a different approach to the function $\pi(x)$ may be found in (Lagarias, Miller,

[^0]Odlyzko, 1985) and (Oliveira e Silva, 2006). For $n \in \mathbb{N} \backslash 2 \mathbb{N}$ let $n!$! denote the product of all positive odd integers less than or equal to n, i.e. $n!!=1 \cdot 3 \cdot 5 \cdot \ldots \cdot n$ and if $n \in 2 \mathbb{N}_{1}$ let $n!$! be the product of all positive even integers less than or equal to n, i.e. $n!!=2 \cdot 4 \cdot \ldots \cdot n$. Set also $0!!:=1$.
Furthermore, let $n!^{2}$ and $n!!^{2}$ denote $(n!)^{2}$ and $(n!!)^{2}$, respectively.
In the sequel we will use the following necessary and sufficient conditions for a positive integer $n \geqslant 2$ to be a prime.
(A) $n \in \mathbb{P} \Leftrightarrow n \mid((n-1)!+1)$ (Ribenboim, 1991, p. 36),
(B) $n \in \mathbb{P} \Leftrightarrow n \mid((n-2)!-1)$ (Sierpiński, 1962, p. 41),
(C) $n \in \mathbb{P} \Leftrightarrow n \left\lvert\,\left(\left[\frac{n}{2}\right]!^{2}+(-1)^{\left[\frac{n}{2}\right]}\right)\right.$ (Górowski, Łomnicki, 2013),
(D) $n \in \mathbb{P} \Leftrightarrow n \left\lvert\,\left((n-2)!!^{2}+(-1)^{\left[\frac{n}{2}\right]}\right)\right.$ (Górowski, Łomnicki, 2013),
(E) $n \in \mathbb{P} \Leftrightarrow n \left\lvert\,\left((n-1)!!^{2}+(-1)^{\left[\frac{n}{2}\right]}\right)\right.$ (Górowski, Łomnicki, 2013).

Notice that condition (A) is the famous Willson's theorem and (B) is called the Leibniz's theorem.

We begin by proving the following result.

Theorem 1

If $f: \mathbb{N}_{2} \rightarrow \mathbb{Z}$ is a function such that

$$
\forall p \in \mathbb{P} \frac{f(p)}{p} \in \mathbb{Z} \quad \text { and } \quad \forall n \in \mathbb{N}_{2} \backslash \mathbb{P} \frac{f(n)}{n} \notin \mathbb{Z}
$$

then

$$
\pi(n)=\sum_{j=2}^{n}\left[\frac{f(j)}{j}-\left[\frac{f(j)-j}{j}\right]\right], \quad n \in \mathbb{N}_{2}
$$

Proof. It suffices to show that

1. $\left[\frac{f(j)}{j}-\left[\frac{f(j)-1}{j}\right]\right]=1$, if $j \in \mathbb{P}$,
2. $\left[\frac{f(j)}{j}-\left[\frac{f(j)-1}{j}\right]\right]=0$, if $j \in \mathbb{N}_{2} \backslash \mathbb{P}$.

Suppose that $j \in \mathbb{P}$. Then $f(j)=k \cdot j$ for some $k \in \mathbb{Z}$ and

$$
\frac{f(j)}{j}-\left[\frac{f(j)-1}{j}\right]=\frac{k \cdot j}{j}-\left[\frac{k j-1}{j}\right]=k-\left[k-\frac{1}{j}\right]=k-(k-1)=1 .
$$

Now assume that $j \in \mathbb{N}_{2} \backslash \mathbb{P}$. Then $f(j)=k \cdot j+r$ for some $k \in \mathbb{Z}$ and $r \in \mathbb{N}$, where $0<r \leqslant j-1$. Hence

$$
\left[\frac{f(j)-1}{j}\right]=\left[k+\frac{r-1}{j}\right]=k
$$

and

$$
\left[\frac{f(j)}{j}-\left[\frac{f(j)-1}{j}\right]\right]=\left[k+\frac{r}{j}-k\right]=\left[\frac{r}{j}\right]=0 .
$$

This completes the proof.
Theorem 2
If $g: \mathbb{N}_{2} \rightarrow \mathbb{R}$ is a function satisfying

$$
\forall p \in \mathbb{P} \frac{g(p)}{p} \in \mathbb{Z} \quad \text { and } \quad \forall n \in \mathbb{N}_{2} \backslash \mathbb{P} \frac{g(n)}{n} \notin \mathbb{Z}
$$

then

$$
\pi(n)=\sum_{j=2}^{n}\left[\cos ^{2} \pi \frac{g(j)}{j}\right] \quad \text { for } n \in \mathbb{N}_{2}
$$

Proof. For the proof it is enough to notice that by the definition of g we get

$$
\left[\cos ^{2} \pi \frac{g(j)}{j}\right]=\left\{\begin{array}{l}
1, \text { if } j \in \mathbb{P}, \\
0, \text { if } j \in \mathbb{N}_{2} \backslash \mathbb{P}
\end{array}\right.
$$

Theorem 3

If $h: \mathbb{N}_{2} \rightarrow \mathbb{R}$ is a function such that

$$
\forall n \in \mathbb{N}_{2} \backslash \mathbb{P} \frac{h(n)}{n} \in \mathbb{Z} \quad \text { and } \quad \forall p \in \mathbb{P} \exists^{1} a \in\{-1,1\}: \frac{h(p)+a}{p} \in \mathbb{Z}
$$

then

$$
\pi(n)=\sum_{j=2}^{n} \frac{\sin ^{2} \pi \frac{h(j)}{j}}{\sin ^{2} \frac{\pi}{j}}
$$

Proof. Notice that for $j \in \mathbb{N}_{2} \backslash \mathbb{P}$ we have $\sin ^{2} \pi \frac{h(j)}{j}=0$.
Suppose that $j \in \mathbb{P}$, then

$$
\sin \pi \frac{h(j)}{j}=\sin \pi \frac{h(j)+a-a}{j}=\sin \pi \frac{h(j)+a}{j} \cos \pi \frac{a}{j}-\cos \pi \frac{h(j)+a}{j} \sin \pi \frac{a}{j}
$$

where $a \in\{-1,1\}$ satisfies $\frac{h(j)+a}{j} \in \mathbb{Z}$. Thus we obtain $\sin ^{2} \pi \frac{h(j)}{j}=\sin ^{2} \frac{\pi}{j}$ and $\frac{\sin ^{2} \pi \frac{h(j)}{j}}{\sin ^{2} \frac{\pi}{j}}=1$ for $j \in \mathbb{P}$ and the proof is completed.

Corollary 1 (Corollary to Theorem 1)
Let the function f be given by one of the following formulas:

$$
\begin{array}{ll}
f(n)=(n-1)!+1, & f(n)=(n-2)!-1, \\
f(n)=\left[\frac{n}{2}\right]!^{2}+(-1)^{\left[\frac{n}{2}\right]}, & f(n)=(n-2)!^{2}+(-1)^{\left[\frac{n}{2}\right]} \tag{4}\\
f(n)=(n-1)!!^{2}+(-1)^{\left[\frac{n}{2}\right]} . &
\end{array}
$$

Then by Theorem 1, in view of (A), (B), (C), (D), (E) we obtain five formulas for the function π, including, given by J. Mináč, formula (3).

Corollary 2 (Corollary to Theorem 2)

Let $g(n)=f(n), n \in \mathbb{N}_{2}$, where f is the function defined by one of the formulas in (41). Then by Theorem 园, in view of (A), (B), (C), (D), (E) we obtain five formulas for the function π, including (1) - given by C. P. Willans.

Corollary 3 (Corollary to Theorem 3)
Let h be the function given by one of the following

$$
h(n)=(n-1)!^{2}, \quad h(n)=(n-2)!^{2}, \quad h(n)=\left[\frac{n}{2}\right]!^{2} .
$$

Then from Theorem 3 in virtue of (A), (B), (C) we get three formulas for π, including, given by C.P. Willans, formula (2).

Now we prove
Theorem 4
The function π may by expressed by each of the following formulas:

$$
\begin{aligned}
& \text { (i) } \pi(n)=1+\sum_{j=1}^{\left[\frac{n-1}{2}\right]} \frac{\cos ^{2} \frac{\pi}{2} \frac{(2 j-1)!!^{2}}{2 j+1}}{\cos ^{2} \frac{\pi}{2(2 j+1)}} \text { for } n \in \mathbb{N}_{2} \\
& \text { (ii) } \pi(n)=1+\sum_{j=1}^{\left[\frac{n-1}{2}\right]} \frac{\left|\cos \frac{\pi}{2} \frac{(2 j-1)!!^{2}}{2 j+1}\right|}{\cos \frac{\pi}{\pi(2 j+1)}} \text { for } n \in \mathbb{N}_{2}
\end{aligned}
$$

Proof. Notice that for $n=2$ we have $\pi(2)=1$. Let $n>2$. It suffices to show that

$$
\cos \frac{\pi}{2} \frac{(2 j-1)!!^{2}}{2 j+1}=0, \quad \text { if } 2 j+1 \in \mathbb{N}_{2} \backslash(2 \mathbb{N} \cup \mathbb{P})
$$

and

$$
\left|\cos \frac{\pi}{2} \frac{(2 j-1)!!^{2}}{2 j+1}\right|=\cos \frac{\pi}{2(2 j+1)}, \quad \text { if } \quad 2 j+1 \in \mathbb{P} \backslash\{2\}
$$

Fix $j \in \mathbb{N}$ such that $2 j+1 \in \mathbb{N}_{2} \backslash(2 \mathbb{N} \cup \mathbb{P})$, hence $(2 j+1) \mid(2 j-1)!!^{2}$. Moreover, $(2 j-1)!!^{2}=l(2 j+1)$, where l is a positive odd integer. It follows that

$$
\cos \frac{\pi}{2} \frac{(2 j-1)!!^{2}}{2 j+1}=0
$$

Now let $j \in \mathbb{N}$ be such that $2 j+1 \in \mathbb{P} \backslash\{2\}$. By (D) we obtain

$$
(2 j-1)!!^{2}+(-1)^{j}=2 k(2 j+1),
$$

where k is a positive integer and

$$
\begin{aligned}
& \cos \frac{\pi}{2} \frac{(2 j-1)!!^{2}+(-1)^{j}-(-1)^{j}}{2 j+1} \\
& \qquad \cos \left(\frac{\pi}{2} \cdot 2 k\right) \cos \frac{\pi(-1)^{j}}{2(2 j+1)}+\sin \left(\frac{\pi}{2} \cdot 2 k\right) \sin \frac{\pi(-1)^{j}}{2(2 j+1)}
\end{aligned}
$$

This yields $\left|\cos \frac{\pi}{2} \frac{(2 j-1)!!^{2}}{2 j+1}\right|=\cos \frac{\pi}{2(2 j+1)}$.
The following result may be proved similarly as Theorem 4

Theorem 5

If $l(n)=(n-1)$! or $l(n)=(n-1)!!^{2}$ for $n \in \mathbb{N}_{2}$, then
(i) $\pi(n)=1+\sum_{j=1}^{\left[\frac{n-1}{2}\right]} \frac{\sin ^{2} \frac{\pi}{2} \frac{l(2 j+1)}{2 j+1}}{\cos ^{2} \frac{\pi}{2(2 j+1)}}$ for $n \in \mathbb{N}_{2}$,
(ii) $\pi(n)=1+\sum_{j=1}^{\left[\frac{n-1}{2}\right]} \frac{\left|\sin \frac{\pi}{2} \frac{l(2 j+1)}{2 j+1}\right|}{\cos \frac{\pi}{2(2 j+1)}}$ for $n \in \mathbb{N}_{2}$.

Using the same reasoning as in the proofs of Theorems 3 and 4 one may show

Theorem 6

Let $k: \mathbb{N}_{2} \rightarrow \mathbb{R}$ be a function satisfying

$$
\forall n \in \mathbb{N} \backslash(2 \mathbb{N} \cup \mathbb{P}) \frac{k(n)}{n} \in \mathbb{Z} \quad \text { and } \quad \forall p \in \mathbb{P} \backslash\{2\} \exists a \in\{-1,1\}: \frac{k(p)+a}{p} \in \mathbb{Z}
$$

then
(i) $\pi(n)=1+\sum_{j=1}^{\left[\frac{n-1}{2}\right]} \frac{\sin ^{2} \pi \frac{k(2 j+1)}{2 j+1}}{\sin ^{2} \frac{\pi}{2 j+1}}$ for $n \in \mathbb{N}_{2}$,
(ii) $\pi(n)=1+\sum_{j=1}^{\left[\frac{n-1}{2}\right]} \frac{\left|\sin \pi \frac{k(2 j+1)}{2 j+1}\right|}{\sin \frac{\pi}{2 j+1}} \quad$ for $n \in \mathbb{N}_{2}$.

Corollary 4 (Corollary to Theorem 6)
Let k be the function given by one of the following formulas: $k(n)=(n-1)$!, $k(n)=(n-2)!, k(n)=\left[\frac{n}{2}\right]!^{2}, k(n)=(n-2)!!^{2}, k(n)=(n-1)!^{2}, k(n)=(n-2)!^{2}$, $k(n)=(n-1)!!^{2}$. Then by Theorem [6] and in view of conditions (A), (B), (C), (D), (E) we obtain other formulas for the function π.

The following formula for the n-th prime was given in (Willans, 1964)

$$
\begin{equation*}
p_{n}=1+\sum_{m=1}^{2^{n}}\left[\left(\frac{n}{1+\pi(m)}\right)^{\frac{1}{n}}\right](\text { Willans, 1964 }) \tag{5}
\end{equation*}
$$

Let π be the function given by the formulas obtained by Corollaries 1, 2, 3 and by conditions (i) and (ii) of Theorems 4. 5. Put moreover $\pi(1)=0$. Then by (5) we get numerous formulas for the n-th prime.

Bibliography

Górowski, J., Łomnicki, A.: 2013, Around the Wilson's theorem, Annales Universitatis Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia V, 5156.

Kaddoura, J., Abdul-Nabi, S.: 2012, On formula to compute primes and the $n^{\text {th }}$ prime, Applied Math. Sciences 6(76), 3751-3757.
Lagarias, J. C., Miller, V. S., Odlyzko, A. M.: 1985, Computing $\pi(x)$: the Meissel-Lehmer method, Math. Comp. 44(170), 537-560.
Oliveira e Silva, T.: 2006, Computing $\pi(x)$: the combinatorial method, Revista do Detua 4(6), 759-768.
Ribenboim, P.: 1991, The little book of big primes, Springer Verlag, New York.
Sierpiński, W.: 1962, Co wiemy a czego nie wiemy o liczbach pierwszych, PZWS, Warszawa.
Willans, C. P.: 1964, On formulae for the n-th prime, Math. Gaz. 48, 413-415.

Instytut Matematyki
Uniwersytet Pedagogiczny
ul. Podchorażych 2
PL-30-084 Kraków
e-mail alomnicki@poczta.fm
e-mail jangorowski@interia.pl

[^0]: *Funkcja π zliczająca liczby pierwsze
 2010 Mathematics Subject Classification: Primary: 11A41, 11N05.
 Key words and phrases: prime number, prime counting function, congruence

