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Abstract. This article draws on the work of Wittmann and his followers
who conceived and developed the notion of substantial learning environment
(SLE). The paper contains a proposal of a teaching unit based on the def-
inition of Factorial Number System (FNS). First, we illustrate the process
of conversion from FNS to the Decimal Number System (DNS) and back.
Secondly, we provide theorems on the divisibility rules for several numbers
in FNS. The main aim of this paper is to present FNS as an example of
a mathematically rich environment wherein pre-service teachers of mathe-
matics may be actively engaged in the process of discovering subjectively
new mathematics.

1. Substantial learning environments for teachers

The notion of substantial learning environment (SLE) introduced by Wittmann
(1995) refers to educational environment which meets the following criteria:

1. It represents central objectives, contents and principles of teaching
mathematics at a certain level.

2. It is related to significant mathematical contents, processes and proce-
dures beyond this level, and is a rich source of mathematical activities.

3. It is flexible and can be adapted to the special conditions of a classroom.
4. It integrates mathematical, psychological and pedagogical aspects of

teaching mathematics, and so it forms a rich field for empirical research
(Wittmann, 1995, p. 365-6).

SLEs by definition extend the boundaries of school level by linking curriculum
contents with more advanced mathematics. Hence, they can and should also be
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explored by pre- and in-service teachers of mathematics, either within academic
courses or along other ways of professional development. Although Wittmann
(2001) emphasizes the important role that curriculum related topics play in stu-
dent teachers’ vocational preparation, he claims that above all, students should
experience mathematics as an activity. It means that, also while attending courses
on abstract mathematics, like for instance algebra or functional analysis, students
should be given the opportunity to discover subjectively new mathematics in their
own effective struggles. Oftentimes, however, students become familiar with higher
mathematics following the ‘definition – theorem – proof’ scheme, which leaves al-
most no room for their own exploration and invention. It seems that there is
an urgent need of creating learning environments that could be substantial, in
the sense of the above description, not only for school students but also for the
students of abstract mathematics. All the features formulated for SLEs crafted
for school mathematics would still be valid at the academic level. In particular,
the postulate of “going beyond the level” can be realized in the form of going
beyond the artificially imposed boundaries of a given sub-discipline of mathemat-
ics. Experiencing pieces of knowledge not as loosely joint, but interrelated parts
of mathematics, could make the learning of the subject more meaningful to the
students.

We focus our attention on educational environments designed for the purpose
of substantial learning, mathematical growth and professional development of pre-
and in-service teachers of mathematics and we call them Substantial Learning
Environments for Teachers (SLEfT).

Since the time when the notion of substantial learning environment has been
formulated, many SLEs appropriate for the school level have been described and
tested by different scholars (e.g., Wittmann, 2005; Krauthausen, Scherer, 2013;
Nührenbörger et al., 2016; Kieran, 2018). In the following section of this article
we share an example of a mathematically rich environment which, to our sense,
may serve as an example of SLEfT. In section 6, we provide several arguments
explaining why and how the Factorial Number System teaching unit meets the
criteria of SLE

2. Factorial Number System – a teaching unit proposal

According to Wittmann (1984):

Appropriate teaching units provide opportunities for doing mathematics, for
studying one’s own learning processes and those of students, for evaluat-
ing different forms of social organisation, and for planning, performing and
analysing practical teaching. Therefore teaching units are a unique means
for penetrating all components of teacher training and relating them to one
another (p. 30).

Wittmann formulates a brief template for a teaching unit (TU) description which
includes statements about TU objectives, materials, problems and background. Us-
ing this scheme to briefly describe our proposal, we outline the following
elements:
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Teaching Unit: Factorial Number System (FNS)

Objectives: converting numbers from FNS to decimal number system (DNS) and
back, discovering theorems related to the divisibility rules in FNS

Materials: the definition of FNS and number notation in FNS

Problems: Given numbers in FNS, find their representation in DNS.
Given numbers in DNS, find their representation in FNS.
Exploring the number notation in FNS, find and formulate the divisibility
rules in FNS.

Background: different representations of numbers, non-standard mixed base po-
sitional number system, discovering mathematical theorems.

Our choice of FNS is motivated by several arguments. First of all, it is a rich field
wherein many mathematical investigations can be held (however, in this paper we
narrow our focus only to the problems of conversion and discovering the divisibil-
ity rules in FNS). Secondly, the topic bridges school and academic mathematical
education, since it evokes reflection on DNS, a system with which the students are
familiar, a general notion of a number system which encompasses far more exem-
plifications, and also one of the fundamental mathematical and didactical ideas of
representation.

3. Factorial Number System

Mixed base systems were a subject of interest to mathematicians, including George
Cantor, already in the 19th century. Generally speaking, they are non-standard po-
sitional numeral systems where the numerical base varies from position to position.
For example, if we measured time of 2 years, 5 months, 3 weeks, 5 days, 8 hours
and 35 minutes, we could code this time as a sequence: (2, 5, 3, 5, 8, 35), where
each position is defined in terms of different base. The system known today as FNS
was first introduced by Laisant (1888). The notion of “factorial number system"
was used, for instance, by Knuth (1981).

Definition 1
Factorial Number System is a positional, mixed base number system in which the
multipliers for numbers at the subsequent positions are factorials. We use the sub-
script “!” to denote a number written in FNS.

Let a be a natural number such that when written in FNS it takes the form of
an n-digit number:

(a)! = (anan−1...a1)!. (1)

The right side of this equation is an abbreviation of the following combination of
factorials and natural coefficients:

(a)! = (anan−1 . . . a1)! = an · n! + an−1 · (n− 1)! + . . . + a1 · 1! (2)

For each multiplier i!, i ∈ {1, 2, ..., n} the coefficient ai ∈ N satisfies the inequality:
0 ≤ (ai)10 ≤ i.
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There exist two definitions of FNS which differ only by the first multiplier from
the right side. It may be equal to 0! and then every natural number ends with 0,
or it may be equal to 1!, as well. In our investigations we adopt the latter version.

A set of FNS digits is infinite but countable. A digit congruent with 10 is
denoted as A. The subsequent digits, i.e. 11, 12 etc. are denoted as B, C, etc.
respectively.

The biggest number recorded in FNS with the use of digits {0, 1, 2, ..., 9} is
(987654321)! which equals (3628799)10. This equality may be shown from the
definition, but it may be also justified by the following theorem:

Theorem 1
For all n ∈ N1, is true

n∑
i=1

i · i! = (n + 1)!− 1. (3)

This theorem means that the biggest number that can be represented with n digits
in FNS is equal to the smallest number that can be represented with n + 1 digits
minus 1.
Proof:
Let n ∈ N1, then

n∑
i=1

i · i! =
n∑

i=1
((i + 1) · i!− i!) =

n∑
i=1

(i + 1)!−
n∑

i=1
i!

= (n + 1)! +
n−1∑
i=1

(i + 1)!−
n∑

i=1
i!

= (n + 1)! +
n−1∑
i=1

(i + 1)! + 1!−
n∑

i=1
i!− 1!

= (n + 1)! +
n∑

i=1
i!−

n∑
i=1

i!− 1 = (n + 1)!− 1,

what was to be demonstrated.
We will apply this theorem to find the decimal value of (987654321)!.

Example 1
(987654321)! = 9 · 9! + 8 · 8! + ... + 2 · 2! + 1 · 1! =

9∑
i=1

i · i! = (9 + 1)!− 1

= 10!− 1 = 3628800− 1 = 3628799.

Let us notice here, an interesting resemblance. In DNS the biggest n + 1-digit
number that we can obtain using all the digits from 0 to 9, would be written with
n nines as 99...999. The value of this number equals

9 · 10n + 9 · 10n−1 + ... + 9 · 102 + 9 · 101 + 9 · 100 = 10n+1 − 1.
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4. Conversion from FNS to DNS and back

4.1. Conversion FNS for DNS

4.1.1. Method I

The easiest way to convert a number from FNS to DNS is to use Definition 1.
Hence, in a general case we will obtain the decimal value of a given n-digit number
as follows:

(anan−1 . . . a2a1)! = an · n! + an−1 · (n− 1)! + . . . + a2 · 2! + a1 · 1!.

Let us check this on one example:

Example 2
Convert (12120)! from DNS to FNS.

(12120)! = 1 · 5! + 2 · 4! + 1 · 3! + 2 · 2! + 0 · 1!
= 1 · 120 + 2 · 24 + 1 · 6 + 2 · 2 + 0 · 1
= 178

However, there are also some other interesting methods one can use to obtain the
same result. One of them refers to an algorithm usually applied to polynomials.

4.1.2. Method II

The second method is based on the Horner’s algorithm (see: e.g., Horner, 1819;
Cajori, 1911) oftentimes used to calculate the polynomial value1.

For any (a)! expressed as stated in (2) the following equation holds:

an · n! + an−1 · (n− 1)! + ... + a1 =
= (((an · n + an−1) · (n− 1) + an−2) · (n− 2) + ...) · 2 + a1 (4)

We can also use the recurrence formula:

s1 = an · n + an−1

s2 = s1 · (n− 1) + an−2

... = ...

sn = sn−1 + a1.

Then the number (a)! after the conversion will have the sn form.
Let us illustrate this method with the conversion of the same number:

1The algorithm uses the least number of multiplications.
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Example 3
Convert (12120)! from FNS to DNS using the Horner’s algorithm.

(12120)! = (((1 · 5 + 2) · 4 + 1) · 3 + 2) · 2 + 0
= ((7 · 4 + 1) · 3 + 2) · 2
= (29 ·+2) · 2
= 89 · 2
= 178.

4.2. Conversion DNS for FNS

4.2.1. Method I

Converting a number a written in DNS to FNS we may start by asking what
is the biggest k ∈ N such that:

k! ≤ a ∧ (k + 1)! > a.

When such a number is found, we divide a by k! and subsequently, divide the
obtained remainders by consecutive natural numbers smaller than k. We continue
this process until we reach the final division by 1!.

The quotients obtained from the division by l, where 1 ≤ l ≤ k and l ∈ N, give
the coefficients to be multiplied by l! in the factorial representation of the number.

The whole process is illustrated with the following example:

Example 4
Convert 178 from DNS to FNS.

178 : 5! = 1, remainder : 58
58 : 4! = 2, remainder : 10
10 : 3! = 1, remainder : 4
4 : 2! = 2, remainder : 0
0 : 1! = 0, remainder : 0

Finally, rewriting the bold numbers in the top–down order we obtain the factorial
notation for (178)10:

(178)10 = (12120)!.

4.2.2. Method II

The second method is similar to Euclid’s algorithm. If we choose to include
0! the first step is the following: 178 : 1 = 178, remainder : 0. If we exclude 0
position from our considerations then, we simply skip this step, and follow the
algorithm below:
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Example 5
Convert 178 from DNS to FNS.

178 : 2 = 89, remainder : 0
89 : 3 = 29, remainder : 2
29 : 4 = 7, remainder : 1
7 : 5 = 1, remainder : 2
1 : 6 = 0, remainder : 1

Writing down the remainders of partial divisions in the reverse order we obtain
the result of the conversion from DNS to FNS. In this case, the number (178)10
turns out to be (12120)! as in the previous example.

5. Divisibility rules in FNS

In the article (Górowski, Łomnicki, 2006) the authors provide several theorems on
the divisibility rules in DNS which the students are able to uncover, unveil and
prove. We propose going a step further and stimulate students’ activity with the
search of divisibility rules in FNS. It is easy to notice that:

∀l ∈ N1 l|(an . . . al 00 . . . 0︸ ︷︷ ︸
l−1−times

)!, where n ∈ Nl.

The above formula is based on the observation that number l appears explicitly
for the first time in l! as one of the multipliers. Moreover, we may notice that the
test of divisibility by any positive natural number l requires the examination of the
expression obtained after subtraction of the sum an ·n!+an−1 ·(n−1)!+ . . .+al · l!,
where n, l ∈ N1 and l ≤ n. Later on in our considerations we use the following
notation:

Q(l) := al−1 · (l − 1)! + . . . + a2 · 2! + a1 · 1!.

Generally we notice, that l|(a)! if and only if l|Q(l), where l ∈ N1.
Below we provide some divisibility rules in FNS together with their proofs.

The first method we use is based on examining the Q(l) segments, and the second
relies on congruence. Moreover, we precede the first two theorems with examples
of operative proofs (Wittmann, 2009), i.e., pre-formal formulations of divisibility
rules, inferred from the observation of the ‘behavior’ of concrete numbers and the
generality of the observed patterns.

We may start exploring the divisibility rules in FNS with what we already know
from DNS. For example: we know how to recognize a number divisible by 2 in DNS
– its last digit has to be 0, 2, 4, 6 or 8. We may now convert some consecutive
natural numbers from DNS to FNS and try to search for some repeating features
of even numbers.
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Table 1. Observable patterns of the first twelve natural numbers
Odd numbers Even numbers

DNS notation FNS notation DNS notation FNS notation
(a)10 (b)! (a)10 (b)!

a b a b
1 1 2 10
3 11 4 20
5 21 6 100
7 101 8 110
9 111 10 120
11 121 12 200

Now, what we may observe is that all the numbers we converted end with 0 or 1
and that in the case of even numbers, the last digit is 0. We may also notice that
since the last digit of a number in FNS representation is always either 0 or 1 (i.e.,
no other digit can stand on the last position), our conclusion has to be true also for
any natural number different from the scrutinized examples. Hence we formulate
the next theorem and provide a more formal proof for it.

Theorem 2 (divisibiltity by 2)
2|(a)! ⇔ a1 = 0.

Proof:
Let us notice that

(a)! = an · n! + an−1 · (n− 1)! + . . . + a3 · 3! + a2 · 2!︸ ︷︷ ︸
this sum is divisible by 2, because every multiplier contains 2

+ a1 · 1!︸ ︷︷ ︸
Q(2)

.

Number (a)! is divisible by 2 if and only if 2|Q(2). Since a1 ∈ {0, 1}, then a1 must
equal 0.

Let us begin our attempts toward formulation of the divisibility rule for 3
in FNS, from taking a closer look at the FNS representations of several natural
numbers divisible by 3.
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Table 2. Observable patterns of the first ten natural numbers divisible by 3
Natural number divisible by 3

DNS notation (a)10 FNS notation (b)!
a b
3 11
6 100
9 111
12 200
15 211
18 300
21 311
24 1000
27 1011
30 1100

The above examples lead us to a conclusion that among the numbers which in
DNS do not exceed 30, all the FNS representations of numbers divisible by 3 end
with digits 00 or 11. We may express this condition in other words and say that
all these numbers, when represented in FNS, have the two last digits equal, that is
a2 = a1. But how can we make sure that this pattern holds true in a general case?
In order to check the validity of this regularity, let us do some simple arithmetic
on the numbers represented in FNS. In DNS when moving from a natural number
divisible by 3 to the next natural number sharing this property, we simply add
3. In FNS notation, number (3)10 is represented as (11)!. We already know that
among the natural numbers from 1 to 30 (DNS), all the numbers divisible by 3 end
with 00 or 11 (FNS). Let us start from an observation that in FNS when adding
3 to any of the numbers from Table 2 we have to do one of the additions below
(Fig. 1):

What holds true for all the considered examples, may now be smoothly extended
to a general case derived from the numbers in the table. When adding 3 to 30 we
receive a result shown in Fig 1a – number 33 in FNS is represented as (1111)!.
Now, when adding 3 to 33 we proceed according to the arithmetic shown in Fig
1b and the result is 36, represented as (1200)!. We may now easily extrapolate
this example forward and say that this pattern has to be repeated cyclically. This
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reasoning is a pre-formal proof of a theorem stating that if a number is divisible
by 3, its representation in FNS has the two last digits equal (00 or 11). We skip
the operative proof of the reverse implication, leaving it to the readers, and move
on to a formal proof of the equivalence of the abovementioned conditions.

Theorem 3 (divisibiltity by 3)
3|(a)! ⇔ a2 = a1.

The first proof of theorem 3:
Let us examine the number:

(a)! = an · n! + an−1 · (n− 1)! + . . . + a4 · 4! + a3 · 3!︸ ︷︷ ︸
this sum is divisible by 3, because every multiplier contains 3

+ a2 · 2! + a1 · 1!︸ ︷︷ ︸
Q(3)

.

The divisibility of number (a)! by 3 depends on the divisibility of number a2 ·2!+a1
by 3:

3|(a)! ⇔ 3|a2 · 2! + a1 · 1!⇔ 3|2 · a2 + a1

It is known, that a1 ∈ {0, 1}. Since a2 ∈ {0, 1, 2}, then 2 · a2 ∈ {0, 2, 4}.
All the possible values of 2 · a2 + a1 are presented in Table 3:

Table 3. Possible values of 2 · a2 + a1.
a2 2 · a2 a1 2 · a2 + a1 a2 2 · a2 a1 2 · a2 + a1

0 0 0 0 0 0 1 1
1 2 0 2 1 2 1 3
2 4 0 4 2 4 1 5

We see that the sum 2 · a2 + a1 is divisible by 3 only in two cases: when
a2 = a1 = 0 and when a2 = a1 = 1. Thus

3|(a)! ⇔ (a2 = a1 = 0 ∨ a2 = a1 = 1)⇔ a2 = a1.

The last equivalence follows from the fact that a1 takes only the values 0 or 1,
what was to be demonstrated.
The second proof of theorem 3:
Let us examine the number (a)! in the form (4):

3|(a)! ⇔ (((((an · n + an−1) · (n− 1) + an−2)·
· (n− 2) + ...) · 4 + a3) · 3 + a2) · 2 + a1 ≡ 0 (mod 3)

It is known, that

((((an · n + an−1) · (n− 1) + an−2) · (n− 2) + ...) · 4 + a3) · 3 ≡ 0 (mod 3),

Thus using the properties of congruence we receive:

Q(3) = 2 · a2 + a1 ≡ 0 (mod 3)⇔ 3 · a2 − a2 + a1 ≡ 0 (mod 3)
⇔ −a2 + a1 ≡ 0 (mod 3)
⇔ a1 ≡ a2 (mod 3)
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Let us notice, that |a1 − a2| ∈ {0, 1, 2}, thus a1 − a2 = 0, since it is the only value
in this set which is divisible by 3. This eventually brings the condition a2 = a1.

Using the theorems 2 and 3 we determine the divisibility rule for 6.

Theorem 4 (divisibiltity by 6)
6|(a)! ⇔ a2 = a1 = 0.

Proof:
We know that 6|(a)!, if and only if 2|(a)! and 3|(a)!. From the theorems 2 and 3
we infer that

6|(a)! ⇔ (a1 = 0 ∧ a1 = a2)⇔ a2 = a1 = 0
what was to be demonstrated.

Theorem 5 (divisibiltity by 4)
4|(a)! ⇔ (2|a3 + a2 ∧ a1 = 0).

Proof:
We have

(a)! = an · n! + an−1 · (n− 1)! + . . . + a5 · 5! + a4 · 4!︸ ︷︷ ︸
this sum is divisible by 4, because every multiplier contains 4

+ a3 · 3! + a2 · 2! + a1 · 1!︸ ︷︷ ︸
Q(4)

.

Then
4|(a)! ⇔ 4|Q(4)⇔ 4|6 · a3 + 2 · a2 + a1.

It is known, that natural number divisible by 4 has to be divisible by 2, then
a1 = 0. Thus

4|6 · a3 + 2 · a2 ⇔ 4|4 · a3 + 2 · a3 + 2 · a2 ⇔ 4|2 · (a3 + a2)⇔ 2|a3 + a2.

Eventually we receive:

4|(a)! ⇔ (2|a3 + a2 ∧ a1 = 0).

Theorem 6 (divisibiltity by 8)
8|(a)! ⇔ (a3 = a2 ∧ a1 = 0).

Proof:
For number (a)! to be divisible by 8, a must be an even number, thus a1 = 0. Let
us examine the number

(a)! = an · n! + an−1 · (n− 1)! + . . . + a5 · 5! + a4 · 4!︸ ︷︷ ︸
this sum is divisible by 8, because every multiplier contains 8

+ a3 · 3! + a2 · 2! + 0 · 1!︸ ︷︷ ︸
Q(4)

.
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As a consequence:

8|(a)! ⇔ 8|a3 · 3! + a2 · 2!⇔ 8|6 · a3 + 2 · a2.

Let us also notice that we received similar result previously, when examining
divisibility by 4. It is not surprising, since the numbers divisible by 8 can only be
found among the numbers divisible by 4.

Since

6 · a3 + 2 · a2 = 2 · (3 · a3 + a1)

for number (a)! to be divisible by 8, it suffices that 4|3 · a3 + a2. All the possible
values at 3 · a3 + a2 are presented in Table 4:

Table 4. Possible values of 3 · a3 + a2.
a3 a2 3 · a3 + a2 a3 a2 3 · a3 + a2 a3 a2 3 · a3 + a2

0 0 0 0 1 1 0 2 2
1 0 3 1 1 4 1 2 5
2 0 6 2 1 7 2 2 8
3 0 9 3 1 10 3 2 11

Now we choose sums divisible by 4, that is: 0, 4 and 8.
Thus, the number (a)! = (anan−1...a1)! is divisible by 8 if and only if:

a1 = 0 ∧ a3 = a2.

Theorem 7 (divisibiltity by 5)
5|(a)! ⇔ 5|4 · a4 + a3 + 2 · a2 + a1.

Proof:
Let us examine number (a)! in the form (4) again. Knowing that

((((an · n + an−1) · (n− 1) + an−2) · (n− 2) + ...) · 6 + a5) · 5 ≡ 0 (mod 5),

we receive condition Q(5) ≡ 0 (mod 5). Thus:

((a4 · 4 + a3) · 3 + a2) · 2 + a1 ≡ 0 (mod 5)
24 · a4 + 6 · a3 + 2 · a2 + a1 ≡ 0 (mod 5)

20 · a4 + 4 · a4 + 5 · a3 + a3 + 2 · a2 + a1 ≡ 0 (mod 5)
4 · a4 + a3 + 2 · a2 + a1 ≡ 0 (mod 5)

Using the definition of congruence, we finally have:

5|4 · a4 + a3 + 2 · a2 + a1.

Following the steps analogically, we can specify the divisibility rules for 7, 9
and 10, leaving the proofs to the reader.
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Theorem 8 (divisibiltity by 7)
7|(a)! ⇔ 7|6 · a6 + a5 + 3 · a4 + 6 · a3 + 2 · a2 + a1.

Theorem 9 (divisibiltity by 9)
9|(a)! ⇔ (3|a5 + 2 · a4 + 2 · a3 + a2 ∧ a2 = a1).

Theorem 10 (divisibiltity by 10)
10|(a)! ⇔ (10|4 · a4 + 6 · a3 + 2 · a2 ∧ a1 = 0)⇔ (5|2 · a4 + 3 · a3 + a2 ∧ a1 = 0).

Some of the tests of divisibility, as being practiced in school, relate to the
occurrence of particular digits on specified positions of numbers, for example: The
natural number is divisible by 5 if and only if its last digit is 0 or 5. Comparing
this approach to the test of divisibility in FNS, we state that similar conditions
are still possible, but far less effective. Let us consider for example divisibility by
5. We know that in order to test whether a number is divisible by 5 it is sufficient
to check if the value of Q(5) expression is divisible by 5. However, the value of
this expression varies from 0 to 119. The set of natural numbers {0, 1, 2, ..., 119}
contains 24 numbers divisible by 5. Hence, if we wanted to determine all the
configurations of digits a4, a3, a2 and a1 resulting in a number divisible by 5,
we would obtain 24 different sequences. In case of any given number, it is not
reasonable to check whether its 4 last digits match one of the 24 cases – a far more
reasonable method would be to simply use Theorem 7.

For the readers’ convenience we gather all the theorems in the table below:

Table 5. Selected divisibility rules in FNS
2

if and only if

a1 = 0
3 a2 = a1
4 2|a3 + a2 ∧ a1 = 0

A number 5 5|4 · a4 + a3 + 2 · a2 + a1
(anan−1...a1)! 6 a2 = a1 = 0
is divisible by 7 7|6 · a6 + a5 + 3 · a4 + 6 · a3 + 2 · a2 + a1

8 a3 = a2 ∧ a1 = 0
9 3|a5 + 2 · a4 + 2 · a3 + a2 ∧ a2 = a1
10 5|2 · a4 + 3 · a3 + a2 ∧ a1 = 0

It is often said that hardly ever are mathematical ideas presented in such a way
that one can track the zig-zag path followed through by the author. We are fully
aware of the fact that this statement holds true also in the case of our work. Our
aim, however, was to briefly present the substantial, mathematical content to be
found along the intellectual play with FNS. We hope that the interested readers
will try to discover the above theorems in their own way. And by doing so, i.e.
by exploring the factorial number system, they will surely discover the plethora of
mathematical activities standing behind the presented work.
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6. Factorial Number System as a substantial learning environ-
ment for pre-service teachers

In this section, we provide several arguments supporting our assertion that Facto-
rial Number System teaching unit meets the criteria of SLE.

6.1. FNS represents central objectives, contents and principles of teaching
school mathematics and that of vocational preparation of pre-service
teachers of mathematics

In the case of the proposed teaching unit, the starting point is the definition of
FNS, a mixed base, positional number system, which rather does not appear in the
traditional curriculum neither at high school, nor at the academic level. It is, how-
ever, connected with the topics covered by the school curriculum (decimal number
system, which is the basic, but one of the many possible, notational systems one
may consider, serving the purpose of representing the same numbers in different
ways) as well as included in academic syllabi (i.e., non-decimal number systems).
The definition of FNS lays the ground for a particular mathematical micro-world
(or a problem field, see: Pehkonen, 1992; Solvang, 1994) to be explored by the
pre-service teachers. The first activity the student teachers take is the conversion
of numbers written in FNS into the DNS notation and back. This initial activ-
ity is necessary for students to learn “how the system works” and it reveals the
basic properties of the system. Then students explore the emerging structure of
FNS in order to find out the divisibility rules for several numbers in this system.
Students formulate and test hypotheses and discover theorems. The best way to
proceed with this task is to work in groups wherein partial results are communi-
cated and negotiated. The last phase includes communicating the results to the
members of other teams and an open discussion where the collected data may
be compared. Such activities encapsulate the general objectives of mathematical
education mentioned in (Winter, 1975), i.e. mathematizing, exploring, reasoning
and communicating.

At our university, student teachers meet non-decimal, fixed base number sys-
tems on three kinds of courses: didactics of mathematics – where they explore
standard, but other than base ten number systems in order to better understand
both the nature of DNS and school students’ difficulties with it, elementary nu-
merical methods – where one of the basic topics refers to the conversion between
and arithmetic operations within different standard number systems, and infor-
matics – where the topics from mathematical courses are extended and shaped for
the purposes of IT teaching (only for those students who choose a specialization
“mathematics with informatics”). Assuming that at other universities prospective
teachers of mathematics attend courses that cover more or less similar topics, we
believe that hardly ever are students introduced to FNS. Exploring FNS, students
may experience how much they rely on intuitions derived from the base ten system.
But the new environment requires leaving some of the previous habits of mind,
and finding out the way the new system works. Due to its non-standard nature,
FNS brings in a lot of newness and freshness which in turn may evoke students’
puzzlement and curiosity. The fact that the students receive only the definition of
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the system and they are given only the basic number notation, prevents learners
from being passive recipients of ready-made knowledge. They rather need to be-
come knowledge builders instead. This may be an important factor supporting an
inquisitive learning (i.e., intrinsically motivated). All in all, FNS creates a ground
for learning which starts with interest and wondering, leads through researching
a new field, inquiring and reasoning, towards discovery based on collected findings
and noticing new emerging questions to be investigated (Scardamalia, 2002).

Such a way of introducing student teachers to a new topic fosters building
a bridge between theoretical knowledge and practice. As stated by Wittmann
(1998):

Mathematical concepts are neither innate nor readily acquired through ex-
perience and teaching. Instead the learners have to reconstruct them in
a continued social process where primitive and only partly effective cognitive
structures which are chequered with misconceptions and errors gradually de-
velop into more differentiated, articulated and coordinated structures which
are better and better adapted to solving problems (pp. 149–150).

When investigating the divisibility rules in FNS, pre-service teachers may ex-
perience that the process of mathematical concepts acquisition requires time within
which the concepts develop. This very practical, lived experience may be an im-
portant factor in students’ professional development. Whenever student teachers
study school curriculum related topics, they inevitably look at them through the
lens of their contemporary knowledge and understanding of these topics. Even
if they have some memories of the difficulties they have experienced as school
students, it is almost impossible for them to go back to these distant memories
and uncover all the layers of cognitive and affective difficulties they have passed
through. Pre-service teachers then need some new experiences, built on an easily
accessible – neither to abstract, nor too detached from school settings – material,
where they can experience learning difficulties anew, observe and scrutinize the
obstacles that emerge within that process and conduct a metacognitive reflection
on their own processes of learning.

As mentioned before, the frequent occurrence of a “definition-theorem-proof”
scheme at the academic level leads to imitative learning, memorizing rules and
learning procedures by heart, without questioning and with almost no room for
asking why some procedures work, and some others do not. Lithner (2008, 2017)
distinguished two types of reasoning that occur in the learning of mathemat-
ics: Algorithmic Reasoning (AR) and Creative Mathematically founded Reasoning
(CMR). The former is characterized as following the previously provided methods
of solution, where the students’ task is to repeat some steps given in advance. AR
is a means to practice and master the procedures to be learned and it may be
helpful in obtaining results quickly. However, if the aim is to learn something new,
students need to create their own methods to solve problems, and no algorithms
are given at hand. In such case, CMR is more relevant. This kind of reasoning
meets the following criteria:

◦ Novelty / Creativity – the students create a reasoning sequence that they
have never experienced before or re-create a forgotten one,
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◦ Plausibility – there exist arguments supporting students’ choice of strategy
and justifications, also it is possible to judge the obtained results as true or
false,
◦ Mathematical foundation / Anchoring – the arguments students use and the
reasoning they conduct are anchored in intrinsic properties of the investi-
gated object.

Whereas AR is supported by the imitative reasoning (i.e., repetition of already
known procedures), CMR requires creative thinking and discovering subjectively
new pathways. If the aim is to obtain results quickly, pre-existing algorithms do
make the task easier. They also free some space in the working memory of the
learners, so that they could focus on more demanding and more complex prob-
lems. AR serves well also in tasks oriented on practicing skills. If, however, the aim
is to learn something new, develop mathematical competence, or acquire some new
skills in problem solving and obtain deeper understanding of mathematical con-
cepts, CMR is definitely far more effective. According to Lithner (2017): ”It is the
domination of algorithmic solution templates in mathematics teaching and learn-
ing, not the algorithms themselves, that is problematic” (p. 939). Some reasonable
balance is needed here and it is the teachers’ responsibility to carefully examine
the context before they decide which way – AR or CMR – is more beneficial to
their students in a particular situation (Jonsson et al., 2014, 2016).

As mentioned above, non-decimal standard, fixed base systems are oftentimes
addressed at different courses for pre-service teachers of mathematics, thus it is
likely that the students have already learned some algorithms enabling them oper-
ating within these systems (see: Wardrop, 1972; Fomin, 1974). It is very unlikely,
however, that they have been introduced to FNS, hence they may begin their ex-
ploration from the very beginning, being equipped only with the definition of the
system and the number notation. The nature of FNS itself then favours Creative
Mathematically founded Reasoning. Paraphrasing famous words of Kant we could
say that “Procedures without meaning are empty, meanings without procedures
are blind”. Whereas students may know many procedures, but lack their meaning,
as well as having tasted some meanings still miss accurate procedures to arrange
them, FNS creates an environment wherein meanings and procedures arise and
develop hand in hand.

Another aspect of the proposed teaching unit is that when exploring FNS,
students engage in a productive cognitive struggle (see: Granberg, 2016). It is well
known that people make a better use of methods they discovered themselves, since
the effects of learning by “finding out” last longer than the knowledge obtained
by “being told” (Qwillbard, 2014; Wirebring et al., 2015; Norqvist, 2016). What
inevitably becomes a part of the exploration of an unfamiliar territory is that
the learners try making connections to their previous knowledge, for this is their
only point of reference. In what follows, such activities support the development
of relational understanding of some broader area the topic under investigation is
a part of. These ideas correspond with the following words of Bruner (1977):

The first object of any act of learning, over and beyond the pleasure it may
give, is that it should serve us in the future. . . (A) way in which earlier learn-
ing renders later performance more efficient is through what is conveniently
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called nonspecific transfer or, more accurately, the transfer of principles and
attitudes. In essence, it consists of learning initially not a skill but a general
idea, which can be used as a basis for recognizing subsequent problems as
special cases of the idea originally mastered (p. 17).

In the sense expressed by Bruner, we find a twofold role that FNS TU may
play in the vocational preparation of mathematics teachers. One is that the expe-
riences gained within the proposed activity may, through the nonspecific transfer
addressed in the above excerpt, result in adopting a new perspective on the number
systems one has met before. The other way, we believe such experiences may af-
fect the learners’ attitude, is that if the students find value in productive struggles
with new problems and in exploring mathematical territories new to them, it is
more likely that as in-service teachers they will be interested in offering activities
of a similar nature to their own students.

6.2. FNS is related to significant mathematical contents, processes and proce-
dures beyond school level, and as a rich source of mathematical activities
can be adapted to the special conditions of a group of learners

Investigating properties of a new object, like factorial number system, students
enter the world of intellectual work similar in its nature to the work of mathemati-
cians – the scientists. At the beginning, the learners only have a piece of informa-
tion, which turns out to give rise to genuine mathematical work. There arise some
questions, but the students cannot know in advance how long it is going to take
them before they will eventually find the answers. In fact, there is no guarantee
they will find them. Also, in the case of solvable problems, it is hard to predict in
advance the final solutions. There are various mathematical activities that become
a part of the work of exploration: formulating and testing hypotheses, generalizing,
formulating theorems and providing justifications for them, discovering algorithms
and so forth.

From the mathematical perspective, FNS is rooted in number theory - a branch
of higher mathematics devoted to the study of numbers, their properties and the
relationships between them. The system provides an opportunity to consider and
discuss one of the most fundamental ideas of mathematics, namely that of repre-
sentation (Bruner, 1966; Lesh, Behr, Post, 1987a; Goldin, 2002). Representations
make abstract mathematical concepts cognitively accessible to the learners. The
development of mathematical competencies of the students entails obtaining flu-
ency in interpreting and making effective use of representations of mathematical
concepts. Metaphorically speaking, we could compare the different number sys-
tems – representing, in fact, the same numbers, just in different manners – to the
different languages, enabling people communicating their thoughts. Knowing and
understanding different representations of the same object, being able to recognize
similarities and differences between them as well as knowing and understanding
the process of conversion between them are one of the key elements of mathemat-
ical communication. Moreover, using different representations of the same object
and knowing that they are not the object itself, enables taking different perspec-
tives on the object (Tripathi, 2008). Meanwhile, many people identify numbers
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with their decimal representation. To them a number is not an abstract concept,
only a sequence of digits. As a result, arithmetic operations become nothing more
than just formal manipulations on symbols, they lose their meaning and sense. ”It
turns out that the best way to deepen one’s understanding of the decimal number
system is to consider analogous problems for non-decimal systems” (Puchalska,
Semadeni, 1988, p. 92). Also, learning about non-decimal systems enables learners
to see how other systems are either different or similar to DNS. In particular, an-
alyzing number representations in different systems with respect to their features,
opens a room for discussing the transparency of number representations (Lesh,
Behr, Post, 1987b; Zazkis, Gadowsky, 2001; Zazkis, Sirotic, 2010).

The divisibility by a certain number may be understood as a constant property
of an abstract number, e.g. we may say that 18 is divisible by 9, always, regardless
the form these two numbers take. In fact, what we deal with throughout the
whole paper is the question of how to recognize and test divisibility of numbers
in the context of a particular representation. Interestingly, when searching for
divisibility rules in FNS, we strongly rely on our intuitions shaped and formed by
the experiences we have with the divisibility rules in DNS. Thus, we have to admit
that we derive knowledge about the behaviour of a particular representation of
a natural number from the behaviour of another representation of this number,
not from the abstract number itself. We may find a lot of joy and satisfaction
playing with different representations of numbers, but do we get anyhow closer to
the abstract concept of a number? Such questions give us a good lesson of humility
and respect since they help us realize how limited we are when trying to reveal
the secrets of the universe of abstract mathematical concepts.

6.3. FNS TU integrates mathematical, psychological and pedagogical aspects
of teaching mathematics, and so it forms a rich field for empirical re-
search

According to what has been said thus far, the proposed teaching unit may be
used as a topic covered by one of the courses attended by pre-service teachers,
depending on the purposes to be served. But there is one more way of making
use of this topic. Within the time of vocational preparation, all the students are
encouraged to become reflective practitioners (see: Wittmann, 2001). One of the
ways to make this goal achievable leads through inculcating and developing some
new habits of mind. A didactical reflection on one’s own learning of abstract math-
ematical contents may lead to posing some questions, like for instance:

◦ How can I convince my students that it is important to distinguish exam-
ples from operative and formal proofs? Can I think of any other examples
of mathematical tasks where my students may tend to treat examples as
sufficient justifications? How will I address their false convictions?
◦ What new things have I learned about the topic I knew before (e.g., divisi-
bility rules, number systems) from looking at it from a new perspective, that
I have not used before?
◦ How does this topic refer to what we teach school students?
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◦ How could a low threshold look like, if I wanted to offer my students a task
whose high ceiling would correspond to this topic?

◦ What kind of obstacles have I encountered on my own way to understanding
this topic / solving this problem?

◦ What can I learn from my own “getting stuck” moments? What have I found
helpful and can I use it in my teaching in order to effectively help my future
students to overcome the obstacles they will encounter?

Summary

Factorial number system is, as we believe, a good learning environment for the
teachers to develop not only mathematical knowledge and skills, but also a kind
of pedagogical mindfulness and sensibility.
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